Hydro Solar and COVID-19: We remain fully operational serving our customers all over Canada and the US. 

0

Your Cart is Empty

Why Evacuated Tubes Heat Pipe Solar Collectors are among the most efficient in Nordic Climates?

by ROGER ABDO

Why Evacuated Tubes or Vacuum Tube Solar Collectors are among the most efficient in Nordic Climates?

Most Canadian Cities and Businesses are located in Nordic Extremely Cold Climate areas. Living in such a harsh climate requires significant resources to provide space heating as well as domestic hot water heating for buildings. This blog will explains why Vacuum Tube Solar Panels are the best choice to provide free heating and fight climate change.

How do Vacuum Tubes Collectors Work?

How do Vacuum Tubes Collectors Work?

This Blog describes Vacuum Tube Solar Collector & Evacuated Tube Solar Collectors working principle. for more info call +1 (888) 686 7652

How much energy can your hydronic solar system generate?

How much energy can your hydronic solar system generate?

Before making the decision to invest into a solar solution, there is an obvious legitimate question to ask: How much energy saving (expressed in KW.h) will my investment generate? And...

Solar Water heater Tank Sizing

Solar Water heater Tank Sizing

This Blog describes the concept behind Thermal Storage for Solar Water Heating Application. It end up with a rule of thumb for every Canadian City instead of a Universal Rule....

Sustainable Farming: How Solar Technology is helping Farmers provide fresh clean water in winter for their cattle

Sustainable Farming: How Solar Technology is helping Farmers provide fresh clean water in winter for their cattle

In Canada, providing clean winter water for cattle is a challenge in cold weather, especially in regions without electricity for running a pump or tank heaters. In the past, livestock...

Why do some Heat Pumps live longer and perform better than others?

Why do some Heat Pumps live longer and perform better than others?

a Brief analysis on factors affecting the efficiency and lifespan of any direct expansion heat pump.

The Return of Hydronic Heating and Cooling to Small and Medium Size Buildings

The Return of Hydronic Heating and Cooling to Small and Medium Size Buildings

Hydronic Heating and Cooling are returning to the medium to small sizes residential and commercial Buildings. Demand for Energy Efficient constructions, encompassing renewable energies, heat recovery as well as thermal...

Caleffi Solar Pump Station NA255160 without Controller
Caleffi Solar Pump Station NA255160 without Controller
Caleffi Solar Pump Station NA255160 without Controller
Caleffi Solar Pump Station NA255160 without Controller
Caleffi Solar Pump Station NA255160 without Controller
$ 1,575.00 CAD
View details

Introduction

Space heating and domestic hot water heating represents between 66 to 75% of Canadian Utility Bills from East to West Coast. Except for Vancouver area, Most Canadian Homes and Businesses are not livable without proper space heating. With Climate Change imposing itself on every country on earth, finding a reliable, efficient (why not free) and affordable way for heating Buildings is a nice to have nowadays but it will become a must in the future.

Covid-19 Pandemic brought to light to everyone on earth the negative side of global connectivity. The speed the virus has spread all over Canada and the US is a tough lesson of the necessity of self sustainability. Self Sustainability means that every household and every family should be locally sustainable. That means that everyone of us in the near future will have to produce his energy (in part or in total) locally, his food (vegetables, fruits, etc...) as well in order to survive in this new world.

Why Solar Thermal not Solar Photovoltaic? Why Solar Water Heating and not Solar Air Heating?

Photovoltaic (PV) Solar Panels Technology is amazing for providing free electricity for plug loads, lighting as well as electricity for fridges and other appliances. However using PV Panels in Canada have lower annual energy efficiency when compared to other solar technologies (such as Vacuum Tube Solar Collectors). In most Canadian installation PV Panels are installed at a Tilt Angle of 30 degree from the horizontal. This leaves them covered with snow almost 4 months a year which limits their  annual energy efficiency to like 15-17%.

Compared to PV Panels, Vacuum Tubes Solar Collectors have 2 to 3 times the annual efficiency of PV panels, requiring 2 to 3 times less roof space. Also Vacuum Tube Collectors have empty space between tubes and are installed at a steeper tilt angle (45 to 70 degree). This makes snow less likely to accumulate on them, which increases their heat output in winter (When Heat is needed the most).

Solar Air Heating is also a promising Technology. In Residential and Light Commercial Applications where space heating is forced air, Hot Air is only required in winter, which leaves the solar air heating panels useless in summer time. Compared to Solar Hydronic Heating, Hot water demand is 12 month a year and 24 hours a day. In winter, Hot Water is required for Domestic Hot Water Heating and/or Space Heating and in summer for Pool/SPA Heating as well as Domestic Hot Water Heating (there are other advantages of using hydronic heating versus forced air heating, This Blog details them all)

By excluding the unused heat generated by solar air heating panels, will make Vacuum Tube Solar Collectors the most promising way of generating hydronic heat for our Canadian Climate.

Solar Water Heating Solar Collectors Ratings

Measuring Solar Collector's thermal efficiency is a complicated and expensive task. This why the Solar Rating and Certification Corporation (SRCC) and the Canadian Standard Association (CSA-F378) have accredited various labs in the US and Canada to provide more accurate, consistent and standardized efficiency values.

What defines collector's thermal efficiency and thermal energy outputs are the following factors:

Ti : Collector's entering fluid temperature in ⁰F or ⁰C.
Ta : Ambient Dry Bulb temperature in ⁰F or ⁰C.
I or G: Insolation Rate expressed in Watts/m² or Btu/hr.ft².
Type of Collector: Flat Plate (Glazed and unglazed), Evacuated Tubes, etc...
Collectors' thermal efficiency (Which is no more than the ratio of thermal energy output divided by solar insolation) is then drawn as function of (Ti - Ta)/I (or G) 

Performance Curve

As we can see in the above Graph:

Solar Collector's thermal performance decreases when Ti (entering fluid temperature) is higher and/or Ta (ambient temperature) is lower.
Solar Collector's thermal performance increases when Ti (entering fluid temperature) is lower and/or Ta (ambient temperature) is higher.
So in hotter climates, where (Ti-Ta) is low, the best performing collectors are the one with a steeper inclined performance curves and in colder climates (such as in Canada and North of the United States) the best performing collectors are the one with a flatter performance curve.

HOW DO VARIOUS HYDRONIC SOLAR COLLECTORS PERFORM? 

Various Panels Performance Curves

The blue Line reflects unglazed solar panel performance. They offer the steepest (Highest Y intercept value) curve, meaning they perform very well the entering fluid temperature is low and ambient air temperature is high (warm air). The steep slope shows that decreasing air temperature (or increasing entering fluid temperature) take a big toll on performance. This type of solar collector is great for heating pools in the summer because pool temperatures are usually fairly close to daytime air temperatures in the summer when pool use occurs (Ti-Ta is at its minimum, and efficiency is at its max).

The red line reflects glazed flat plate solar panel performance. They offer slightly lower Y intercept values because the glass coating reflects some light, but the efficiency slope is flatter than unglazed panels because the glazed panels have insulation inside and trap the absorber's heat inside the collector's box. as a result the panel looses less heat when outdoor air is cooler.

The green line represents evacuated tube performance. These collectors offer lower Y intercept values and their slope is even flatter that glazed panels. On sunny hot days , they don't perform as well as flat plates, but the excellent vacuum insulation makes them more efficient that flt plates when it's very cold outside or sun is weak (low insolation values). This flatter slope also means that evacuated tubes are more appropriate for projects requiring high fluid temperatures in colder climates such as space and process water heating.

WHAT IS THE USEFUL COLLECTOR'S THERMAL EFFICIENCY? 

Having free hot water from your solar panels is fun but to payback your investment (the cost of panels, storage tank, piping, control, etc...) you need to make use of the generated heat. Living in Canada and having a lot of hot water in July and August in excess of your domestic hot water demand is simply a waste. The reason is simple, a solar generated unused heat, is a wasted heat that don't count in your installation annual efficiency, because that wasted heat do not offset any KWh from your utility bill.

The intersection between the Green and Red performance line in Fig.2 is at (Ti-Ta)/G=0.4. Assuming we are in Montreal (Quebec) where:

Outdoor temperature is at -30⁰ C and our Solar Panels are used for space heating where the heating loop is heated from 104 ⁰F (Ti=104 ⁰F=40⁰C) to 120 ⁰F. In half sunny half cloudy day with G=500 W/m². = 158 Btu/hr.ft² (Ti-Ta)/G= (104+20)/158=0.78 way on the right of the intersection point. This gives us a thermal efficiency of 0.35 or 35% for vacuum tube collectors versus a 0.1 or 10% efficiency for glazed flat plate collector.

Outdoor temperature
is at 0⁰C and our Solar Panels are used for space heating where the heating loop is heated from 104 ⁰F (Ti=104 ⁰F=40⁰C) to 120 ⁰F. In half sunny half cloudy day with G=500 W/m². = 158 Btu/hr.ft² (Ti-Ta)/G= (104-32)/158=0.45 way on the right of the intersection point. This gives us a thermal efficiency of 0.4 or 40% for both types of collectors.

For outdoor temperatures below 0⁰ C, Flat Plate solar collectors are more efficient but heating demand is much lower than in extreme winter conditions. Higher Thermal efficiency at mid-winter season generate more energy than needed, thus increasing the volume of wasted energy
In the city of Montreal we have 121 110 Heating Hours for outdoor temperatures below 0⁰ C (where heating demand is high to medium) and 54 385 Heating Hours for outdoor temperatures above 0⁰ C (where heating demand is moderate to low).


Running an Excel Bin Hours Energy simulation and comparing our XKPH58 Vacuum Tubes Solar Collectors (3 x 30 Tubes Collectors) to a Glazed Flat Plate solar collectors (having a Y intercept of 0.792, slope of -7.517 W/m².⁰C and same Gross Area) and after putting the monthly Generated KWh and the Building Monthly Heating Demand into a graph, we get the following result:

Excel Simulation Results

As we can see in the above graph:

  • Between the months of April and end of October, Glazed Flat Plate Collectors generate much more energy than Vacuum tubes Collectors in a scale exceeding Building Hot Water demand. Generated Hot Water in Excess of demand is not counted toward annual Collectors' thermal efficiency.  
  • Between the months of November and end of March, Glazed Flat Plate Collectors generate much less energy than Vacuum tubes Collectors in a scale far below Building Hot Water demand.  

Adding all together, the Useful Generated Hot Water energy by the vacuum tubes collectors is 13 800 KWh Vs a Glazed Flat Plate generated energy of 11 474 KWh. This means that in this case Vacuum Tubes Solar Collectors are 20.3% more efficient than Glazed Flat Plate.

Vacuum Tube Solar Collector Kit, SRCC Certified, XIANKE XKPH58 - Complete with Manifold, Frame, Tubes and 45⁰ Frame Kit
Vacuum Tube Solar Collector Kit, SRCC Certified, XIANKE XKPH58 - Complete with Manifold, Frame, Tubes and 45⁰ Frame Kit

Vacuum Tube Solar Collector Kit, SRCC Certified, XKPH58 - Complete with Manifold, Frame, Tubes and 45⁰ Frame Kit

$ 615.00 CAD
View details
15T_1C_100L_PST_SSA Closed Loop Solar Water heater Kit with 1x15 Tubes Collector, 100L Storage Tank and selected options
15T_1C_100L_PST_SSA Closed Loop Solar Water heater Kit with 1x15 Tubes Collector, 100L Storage Tank and selected options

15T_1C_100L_PST_SSA Closed Loop Solar Water heater Kit with 1x15 Tubes Collector, 100L Storage Tank and selected options

$ 2,877.75 CAD
View details
All in One Buffer Tank and Indirect Water Heater - 200 L
All in One Buffer Tank and Indirect Water Heater - 200 L

All in One Buffer Tank and Indirect Water Heater 200 L - Standard Diameter Lower & Upper Coil - (Φ16mm / Φ⅝") - Model No. CBIT200L2C16

$ 1,190.00 CAD
View details
MAFP020A Air to Water Heat Pump for Space and DHW Heating and Space Cooling/Heating - EVI Technology for Canadian Climate - Model MAFP
MAFP020A Air to Water Heat Pump for Space and DHW Heating and Space Cooling/Heating - EVI Technology for Canadian Climate - Model MAFP
MAFP040A Air to Water Heat Pump for Space and DHW Heating and Space Cooling/Heating - EVI Technology for Canadian Climate - Model MAFP
MAFP060A Air to Water Heat Pump for Space and DHW Heating and Space Cooling/Heating - EVI Technology for Canadian Climate - Model MAFP

Air to Water Heat Pump for Space and DHW Heating and Space Cooling/Heating

$ 4,901.00 CAD
View details
AquaMotion AMR-3F1 Hydronic Circulation Pump - 3 Speed
AquaMotion AMR-3F1 Hydronic Circulation Pump - 3 Speed

AquaMotion AMR-3F1 Hydronic Circulation Pump - 3 Speed

$ 260.46 CAD
View details
Flexible Corrugated Stainless Steel EPDM Pre Insulated Twin Solar Hose with Seamless Jacketing & Sensor Cable
Flexible Corrugated Stainless Steel EPDM Pre Insulated Twin Solar Hose with Seamless Jacketing & Sensor Cable
Flexible Corrugated Stainless Steel EPDM Pre Insulated Twin Solar Hose with Seamless Jacketing & Sensor Cable

Flexible Corrugated Stainless Steel EPDM Pre Insulated Twin Solar Hose with Seamless Jacketing & Sensor Cable

$ 390.00 CAD
View details
Tool for Flattening Corrugated Stainless Steel Flexible Pipe
Tool for Flattening Corrugated Stainless Steel Flexible Pipe

Tool for Flattening Corrugated Stainless Steel Flexible Pipe

$ 40.00 CAD
View details
BELIMO Motorized 1/2" NPT 2 Way Valve -  Electronic Fail Safe 24V-ON/OFF
BELIMO Motorized 1/2" NPT 2 Way Valve -  Electronic Fail Safe 24V-ON/OFF

BELIMO Motorized 1/2" NPT 2 Way Valve - Electronic Fail Safe 24V-ON/OFF

$ 199.80 CAD
View details

Leave a comment

Please note, comments must be approved before they are published